- ==Sir Arthur Conan Doyle

They adso serve who only
stand and wait,
—Jobe Milton

dest things of
messdge that
. nderstand, rejoice, for
© yonr soul is ative.

1190 internet & World Wide Web How to Program

28.1 Introduction

This chapter introduces web services, which promote software portability and reusability
in applications that operate over the Internet. A web service is a software component
stored on one computer that can be accessed via method calls by an application (or other
software component) on another computer over a network. Web setvices communicate
using such technologies as XML and HTTP. Several Java APIs facilitate web services. In
this chapter, we'll be dealing with Java APls that are based on the Simple Object Access
Protocol (SOAP)—an XML-based protocol thar allows web services and clients to com-
municate, even if the client and the web service are written in different languages. There
are other web services technologics, such as Representational State Transfer (REST),
which we cover in the contect of ASP.NET web services in Section 28.9. For informa-
tion on web services, see the web resources in Section 28.10 and visit our Web Services
Resource Center at www.deitel.com/WebServices. The Web Services Resource Center

Web Services 1191

includes information on designing and implemenring web setvices in many languages, and
information about web services offered by companies such as Google, Amazon and eBay.
You'll also find many additional tools for publishing and consuming web services. [Note:
This chapter assumes that you know Java for Sections 28.2--28.8. To learn more about
Java, check out Java How to Program, Seventh Edition, or visit our Java Resource Centers
at www.deitel.com/ResourceCenters.htm?, For Section 28.9, the chapter assumes you
know Visual Basic and ASP.NET. To learn more about Visual Basic and ASP.NET, check
out our book Visual Basic 2005 How to Program, Third Edition or visit our Visual Basic
Resource Center (www.deitel.com/visualbasic/) and our ASP.NET Resource Center
(www.deitel.com/aspdotnet/).]

Web services have important implications for business-to-business (B2B) transac-
tions. They enable businesses to conduct transactions via standardized, widely available
web services rather than relying on proprietary applications. Web services and SOAP are
platform and language independent, so companies can collaborate via web services
without worrying abour the comparibility of their hardware, software and communica-
tions technologies. Companies such as Amazon, Google, eBay, PayPal and many others
are using web services to their advantage by making their server-side applications available
to pal'tﬂcfs via ch SCrViCCS.

By purchasing web services and using extensive free web services that are relevant wo
their businesses, companies can spend less time developing new applications and can
create innovative new applications. E-businesses can use web services to provide their cus-
tomers with enhanced shopping experiences. Consider an online music store. The store’s
website links to information about various CDs, enabling users to purchase the CDs, o
learn abour the artists, to find more titles by those artises, to find other artists” music they
may enjoy, and more. Another company that sells concert tickets provides a web service
that displays upcoming concert dates for various artists and allows users to buy tickets. By
consuming the concert-ticket web service on its site, the online music store can provide an
additional service to its customers, increase its site traffic and perhaps earn a commission
on concert-ticket sales. The company that sells concert tickets also benefits from the busi-
ness relationship by selling more tickets and possibly by receiving revenue from the online
music store for the use of the web service.

Any Java programmer with a knowledge of web services can write applications that
can “consume” web services. The resulting applications would call web service methods of
objects running on servers that could be thousands of miles away. To learn more about
Java web services read the Java Technology and Web Services Overview at java. sun. com/
webservices/overview. html.

Netbeans

Netbeans—developed by Sun—is one of the many tools that enable programmers to
“publish” and/or “consume” web services. We demonstrate how to use Netbeans to imp-
lement web services and invoke them from client applications. For each example, we pro-
vide the web service’s code, then present a client application that uses the web service. Our
fitst examples build web services and client applications in Netbeans. Then we demo-
nstrate web services that use more sophisticated features, such as manipulating databases
with JDBC and manipulating class objects. For information on downloading and install-
ing the Netbeans 5.5.1 IDE, its Visual Web Pack and the Sun Java System Application
Server (S§]SAS), see Section 26.1.

1192 Internet & World Wide Web How to Program

28.2 Java Web Services Basics

A web service normally resides on a server. The application (i.e., the client) that accesses
the web service sends 2 method call over a network to the remote machine, which processes
the call and returns a response over the network to the application. This kind of distribu-
ted computing is beneficial in many applications. For example, a client application without
direct access to a database on a remote server might be able to retrieve the data via a web
service. Similarly, an application lacking the processing power to perform specific compu-
tations could use a web service to take advantage of another system’s superior resources.

In Java, a web service is implemented as a class. In previous chapters, all the pieces of
an application resided on one machine. The class that represents the web service resides on
a server—it’s not part of the client application.

Making a web service available to receive client requests is known as publishing a web
service; using a web service from a client application is known as consuming a web service.
An application that consumes a web service consists of two parts—an object of a proxy
class for interacting with the web service and a client application that consumes the web
service by inveking methods on the object of the proxy class. The client code invokes
methods on the proxy object, which handles the details of communicating with the web
service (such as passing method arguments to the web service and receiving return values
from the web service) on the client’s behalf, This communication can occur over a local
necwork, over the Internet or even with a web service on the same computer. The web ser-
vice performs the corresponding task and returns the results to the proxy object, which
then returns the results to the client code. Figure 28.1 depicts the interactions among the
client code, the proxy class and the web service. As you'll soon see, Netbeans creates these
proxy classes for you in your client applications.

Requests to and responses from web services created with JAX-WS 2.0 (one of many
different web service frameworks) are typically transmitted via SOAP. Any client capable
of generating and processing SOAP messages can interact with a web service, regardless of
the language in which the web service is written. We discuss SOAP in Section 28.5.

Client . Server

Fig. 28.1 | Interaction between a web service client and a web service.

28.3 Creating, Publishing, Testing and Describinga Web
Service

The following subsections demonstrate how to create, publish and test a HugeInteger web
service that performs calculations with positive integers up to 100 digits long (maintained
as arrays of digits). Such integers are much larger than Java’s integral primitive types can
represent. The HugeInteger web service provides methods thar take two “huge integers”

Web Services 1193

(represented as Strings) and determine their sum, their difference, which is larger, which
is smaller or whether the two numbers are equal. These methods will be services available
to other applications via the web—hence the term web services.

28.3.1 Creating a Web Application Project and Adding a Web Service
Class in Netbeans

When you create a web service in Netbeans, you focus on the web service’s logic and let
the IDE handle the web service’s infrastructure. To create a web service in Netbeans, you
first create 2 Web Application project. Netbeans uses this project type for web services that
are invoked by other applications.

Creating a Web Application Project in Netbeans
To create a web application, perform the following steps:

1. Select File > New Project to open the New Project dialog,

2. Select Web from the dialog’s Categories list, then select Web Appiication from the
Projects list. Click Next >.

3. Specify the name of your project (HugeInteger) in the Project Name field and
specify where you’d like to store the project in the Project Location field. You can
click the Browse button to select the location.

4. Select Sun Java System Application Server 9 from the Server drop-down list.

5. Select Java EE 5 from the J2EE Version drop-down list.

6. Click Finigh to dismiss the New Project dialog.

This creates a web application that will run in a web browser, similar to the Visual Web
Application projects used in Chapters 26 and 27. Netbeans generates additional files o
support the web application. This chaprer discusses only the web-service-specific files.

Adding a Web Service Class to a Web Application Project

Perform the following steps to add a web service class to the project:

1. In the Projects tab in Nertbeans, right click the Hugelnteger project’s node and
select New > Web Sarvice... to open the New Web Service dialog.

2. Specify HugeInteger in the Web Service Name field.
3. Specify com.deitel.iw3htp4.ch28.hugeinteger in the Package field.
4. Click Finish to dismiss the New Web Service dialog.

The IDE generates a sample web service class with the name you specified in Step 2. You
can find this class in the Projects tab under the Web Services node. In this class, you'll
define the methods that your web service makes available to client applications. When you
eventually build your application, the IDE will generate ocher supporting files (which we’ll
discuss shortly) for your web service.

28.3.2 Defining the HugeInteger Web Service in Netbeans

Figure 28.2 contains the HugeInteger web service's code. You can implement this code
yourself in the HugeInteger. java filc created in Section 28.3.1, or you can simply replace
the code in HugeInteger.java with a copy of our code from this example’s folder. You

1194 Internet & World Wide Web How to Program

can find this file in the project’s srch\java\comideitel\iw3dhtpaich28\hugeinteger
folder. The book’s examples can be downloaded from www.ded tel.com/books/iw3htpd/.

ﬂugelpt r’ java f;' T
damﬂ 1w3htp4 chzs huge‘mtegef'

mpor javax.]ws WebServ1ce // program uses the(annotat1on @NebServwceg
mpott Javax jWS webMethod; // program uses the annhotation @WebMethod §§
t Javax ws WebParam. // program uses the annotation @WebParam

// sets class name
") // sets the servic

name = "HugeInteger

HugeIntegerServ1ce e hame:

Atés A ugeInteger from a Strﬁng
tazx,iﬂbgeIﬂteger parseﬂagelnteger(

Hugelnfeger temp new HugeInteger(},_
““int size = s.length();

“for (int i o= 0; 1< size; iR+0) :
temp.number[1] = s.charAt{ size - ;

Fig. 28.2 | HugeInteger web service that perfonms poentions on large integre<. (Part | of3))

Web Services 1195

ublic Strmg add(@ebParam{ name = "first”) 5tring firse,
@WebParam(name "second”) Strmg second)

2 ebMethod(operationName "subtract”) e
;pubiic String subtract(@WebParam(name = "first") String first,
@webParam(name = "second”™) String second) ’

Fig. 28.2 | HugeInteger web service that performs operations on large integers. (Part 2 of 3.)

1196 Internet & World Wide Web How to Program

igger™). .
ub11c booiean b1gger(@WebParam(name. ='"f st" pE S”
= second“) String second '

webMethod(operationName = .
ublic boolean sma'Her(@WebParam(name = “ﬁrst") Str'mg, £ r
' {WebParam(name = "second”) String second)

ebMethod(operationName = "equals®):

yb1ic boolean equals(-'@WebParaw(name'
@wWebParam(name = "second"
-oraraml namt ey

Fig. 28.2 | HugeInteger web service that performs operations on large integers. (Part 3 of 3.)

Lines 5-7 import the annotations used in this example. By default, each new web ser-
vice class created with the JAX-WS APIs is a POJO (plain old Java object), meaning
that—unlike prior Java web service APIs—you do not need to extend a class or implement
an interface to create a web service. When you compile a class that uses these JAX-WS 2.0
annorations, the compiler creates all the server-side artifacts that support the web

Web Services 1197

service—that is, the compiled code framework that allows the web service to wait for client
requests and respond to those requests once the service is deployed on an application
server. Popular application servers that support Java web services include the Sun Java
System Application Server (www. sun.com/software/products/appsrvr/index.xml),
GlassFish (glassfish.dev.java.net), Apache Tomcar (tomcat .apache.org), BEA
Weblogic Server (www.bea.com) and JBoss Application Server (www.jboss.org/
products/jbossas). We use Sun Java System Application Server in this chapter.

Lines 9-11 contain a @ebService annotation (imported at line 5) with properties
name and serviceName. The @WebService annotation indicates that class HugeInteger
implements a web service. The annotation is followed by a set of parentheses containing
optional elements. The annotation’s name element (line 10} specifies the name of the
proxy class that will be gencrated for the client. The annotation’s serviceName element
(line 11) specifies the name of the class that the client uses to obtain an object of the proxy
class. [Note: If the serviceName element is not specified, the web service's name is assumed
to be the class name followed by the word Service.] Netbeans places the @ebService
annotation at the beginning of each new web service class you create. You can then add
the name and serviceName properties in the parentheses following the annotation.

Line 14 declares the constant MAXIMUM that specifies the maximum number of digits
for aHugeInteger (i.c., 100 in this example). Line 15 creates the array that stores the digits
in a huge integer. Lines 18-40 declare merthod toString, which returns a String repre-
sentation of a HugeInteger without any leading Os. Lines 43-52 declare static method
parseHugeInteger, which converts a 5tring into a Hugelnteger. The web service’s
methods add, subtract, bigger, smaller and equals use parseHugelnteger to convert
their String arguments to HugeIntegers for processing.

HugeInteger methods add, subtract, bigger, smaller and equals are tagged with
the @WebMethod annotation {lines 55, 81, 117, 133 and 141) to indicate that they can be
called remotely. Any methods that are not tagged with @webMethod are not accessible to
clients that consume the web service. Such methods are typically utility methods within
the web service class. Note that the @ebMethod annotations each use the operationName
element to specify the method name that is exposed to the web service's client.

Failing to expose a method as a web method by declaring it with the @WebMethod annotation
prevenzs clients of the web service from accessing the method.

M Common Programming Error 28.1

=n Common Programming Error 28.2

| Methods with the @webMethod annotation cannot be static. An object of the web service class
must exist for a client to access the service's web methods.

Fach web method in class HugeInteger specifies parameters that are annotated with
the @WebParam annotation (c.g., lines 5657 of method add). The optional @WebParam ele-
ment name indicates the parameter name that is exposed to the web service’s clients.

Lines 5578 and 81-102 declare HugeInteger web methods add and subtract. We
assume for simplicity that add does not result in overflow (i.e., the result will be 100 digits
ot fewer) and that subtract’s first argument will always be larger than the second. The
subtract method calls method borrow (lines 105~114) when it is necessary to borrow 1
from the next digit to the left in the first argument—that is, when a particular digit in the

1198 Internet & World Wide Web How to Program

left operand is smaller than the corresponding digit in the right operand. Method borrow
adds 10 to the appropriate digit and subtracts 1 from the next digit to the left. This utility
method is not intended to be called remotely, so it is not tagged with @webMethod.

" Lines 117-130 declare HugeInteger web method bigger. Line 123 invokes method
subtract to calculate the difference between the numbers. If the first number is less than
the second, this results in an exception. In this case, bigger returns false. If subtract
does not throw an exception, then line 124 returns the result of the expression

Idifference.matches{ "A[0]+3")

This expression calls String method matches to determine whether the String differ-
ence matches the regular expression "A[0]+38", which determines if the String consists
only of one or more 0s. The symbols A and $ indicate that matches should return true
only if the entire $tring difference matches the regular expression. We then use the log-
ical negation operator (!} to return the opposite boolean value. Thus, if the numbers are
equal (i.e., their difference is 0), the preceding expression returns false—the first number
is not greater than the second. Otherwise, the expression returns true.

Lines 133—146 declare methods smatler and equatls. Method smalier returns the
result of invoking method bigger (line 137) with the arguments reversed—if first is less
than second, then second is greater than first. Method equals invokes methods bigger
and smaller (line 149). If either bigger or smaller retuns true, line 145 returns false,
because the numbers are not equal. If both methods return false, the numbers are equal
and line 145 returns true.

28.3.3 Publishing the HugeInteger Web Service from Netbeans

Now that we've created the HugeInteger web service class, we'll use Netbeans to build and
publish (i.e., deploy) the web service so that clients can consume its services. Netbeans
handles all the derails of building and deploying a web service for you. This includes cre-
ating the framework required to support the web service. Right click the project name
(HugeInteger) in the Netbeans Projects tab to display the pop-up menu shown in
Fig. 28.3. To determine if there are any compilation errors in your project, select the Build
Project option. When the project compiles successtully, you can select Deploy Project to
deploy the project to the server you selected when you set up the web application in
Section 28.3.1. If the code in the project has changed since the last build, selecting Deploy
Project also builds the project. Selecting Run Project executes the web application. If the
web application was not previously built or deployed, this option performs these tasks first.
Note that both the Deploy Project and Run Project options also start the application server
(in our zace Sun Java System Application Server) if it is not already running. To ensure
that all source-code files in a project are recompiled during the next build operation, you
can use the Clean Project or Clean and Bulld Project options. If you have not already done
50, select Deploy Project now.

28.3.4 Testing the HugeInteger Web Service with Sun Java System
Application Server’s Tester Web page

The next step is to test the HugeInteger web service. We previously selected the Sun Java
System Application Server to execute this web application. This server can dynamically

Web Services 1199

Buid Project

S Cloan and Bukd Project

}~ Cisan Project
Vorlfy Project |
Ganarate Xrvadot for Projact :

Debesg Project

Osploy Project

Set Main Project

Tty g browa
Close Project

Rename Profect

Fig. 28.3 | Pop-up menu that appears when you right click a project name in the Netbeans

Projects tab.

create a web page for testing a web service’s methods from a web browser. To enable this
capability:
1. Right click the project name (HugeInteger) in the Netbeans Projects tab and
select Properties from the pop-up menu to display the Project Properties dialog.

2. Click Run under Categories to display the options for running the project.
3. In the Relative URL field, type /HugeIntegerService?Tester.
4, Click OK to dismiss the Project Properties dialog.

The Relative URL field specifies whar should happen when the web application executes.
If this field is empty, then the web application’s default JSP displays when you run the
project. When you specify /HugeIntegerService?Tester in this field, then run the
project, Sun Java System Application Server builds the Tester web page and loads it into
your web browser. Figuze 28.4 shows the Tester web page for the HugeInteger web ser-
vice. Once you've deployed the web service, you can also type the URL

http://localhost:8080/HugeInteger/HugeIntegerService?Tester

in your web browser to view the Tester web page. Note that HugeIntegerService is the
name (specified in line 11 of Fig. 28.2) that clients, including the Tester web page, use to
access the web service.

To test HugeInteger’s web methods, type two positive integers into the text fields to
the right of a particular method’s button, then click the button to invoke the web method
and see the result. Figure 28.5 shows the results of invoking HugeInteger's add method
with the values 9999999999999999¢ and 1. Note that the number 99999999999999999 is
larger than primitive type Tong can represent.

1200 Internet & World Wide Web How to Program

HugelntegerService Web Service Tester

Thix form will alow you to test your web service implernentation (WSDL Fie)
To isvoke an operation, il the method parameter(s) input boxes and click on the button inbeled with the method name.
Methods :

public abetract java lang String com deitet iwbep4 chI8 hogeinteger Higelnteger add(java tang String, java bng, Sting)
(aod] { i D

Lol i U b3

{ioutract) f

[Lemater | { H 3

Fig. 28.4 | Tester web page created by Sun Java System Application Server for the
HugeInteger web service.

Note that you can access the web service only when the application server is running,
If Netbeans launches the application server for you, it will automatically shut it down
when you close Netbeans. To keep the application server up and running, you can launch
it independently of Netbeans before you deploy or run web applications in Netbeans. For
Sun Java System Application Server running on Windows, you can do this by selecting

LB @ e e e e i e B
iw3bip# clO8 bngeioteger Hugelmeger add(jve

Fig. 28.5 | Testing HugeInteger's add method. {Part | of 2.}

Web Services 1201

¥ add Method invocation

B Muhod parameter(z)

B e T Vilke
{jasn g String 199999999999999099
) . v g Strg |1)

Mathod returned
jeveleng Stimg ; “100000000000000008"

Fig. 28.5 | Testing HugeInteger’s add method. (Part 2 of 2.)

Start > All Programs > Sun Microsystems > Application Server PE @ > Start Default Server.
To shut down the application server, you can select the Stop Default Server option from
the same location.

Testing the HugeInteger Web Service from Another Computer

If your computer is connected to a network and allows HTTP requests, then you can test
the web sctvice from another computer on the netwotk by typing the following URL
(where host is the hostname or IP address of the computer on which the web service is dep-
loyed) into a browser on another computer:

http: //host: 8080/HugeInteger/HugeIntegerService?Tester

Note to Windows XP Service Pack 2 and Windows Vista Users

For security reasons, computers running Windows XP Service Pack 2 or Windows Vista
do not allow HTTP requests from other computers by default. If you wish to allow other
computers to connect to your computer using HTTP, perform the following steps on
Windows XP SP2: .

1. Select Start > Control Panel to open your system’s Control Panet window, then
double click Windows Firewall to view the Windows Firewall scttings dialog.
2. In the Windows Firewall dialog, click the Exceptions tab, then click Add Port...
and add port 8080 with the name SJSAS.
3. Click OK to dismiss the Windows Firewall settings dialog.
To allow other computers to connect to your Windows Vista compurer using HT TP, per-
form the following steps:

1. Open the Control Panel, switch to Classlc View and double click Windows Firewalt
to open the Windows Firewali dialog.

1202 Internet & World Wide Web How to Program

2. In the Windows Firewall dialog click the Change Settings... link.

3. In the Windows Firewall dialog, click the Exceptions tab, then click Add Port...
and add port 8080 with the name SJSAS.

4. Click OK to dismiss the Windows Firewall settings dialog.

28.3.5 Describing a Web Service with the Web Service Description
Language (WSDL)

Once you implement a web service, compile it and deploy it on an application server, a
client application can consume the web service. To do so, however, the client must know
where to find the web service and must be provided with a description of how to interact
with the web service—that is, what methods are available, what patameters they expect
and what each method returns. For this purpose, JAX-WS uses the Web Service Descrip-
tion Language (WSDL)—a standard XML vocabulary for describing web services in a
platform-independent manner.

You do not need to understand the derails of WSDL to take advantage of it—the
application server software (SJSAS) generates a web service’s WSDL dynamically for you,
and client tools can parse the WSDL to help create the client-side proxy class that a client
uses to access the web service. Since the WSDL is created dynamically, clients always
receive a deployed web service’s most up-to-date description. To view the WSDL for the
HugeInteger web service (Fig. 28.6), enter the following URL in your browser:

http://localhost:B8080/HugeInteger/HugelntegerService?WsDL
or click the WSDL File link in the Tester web page (shown in Fig. 28.4).

<?xenk verson="1.0" uncodmg="UTF-8" 2~
~ cdefinitions yminc="http:/ fschemas wndsoap. oeg) wedl/)
emiviz: trawthitpsf Fhugelmteger. ch28 tw3htpd. deitel.com/” xansucd="h P/ / weem w3, 00g /2001 /XML SUwemna®
aring as ="t Fachemon. xnisonn ot/ wedl/ soap/*
+h18. h Suitel.

pace="hetp://

com/" nivtw=" vica™>

e
- Ctypas>

s iwdhitpd.deltel com/*
r
~ENF el vice_ ated® rming wsd="hth: / fachemas smisosp. org /wsdlf*
i 02817 £"Eps/ £ schemas. xmiscap,ory f wad/sonpil/® />
«/epdischamasr
</typas»
- amessage nane et add”
<t name="parameters’ dement="tha:add” />
</massage>

Fig. 28.6 | A portion of the .wsd1 file for the HugeInteger web service.

Web Services 1203

Accessing the HugeInteger Web Service’s WSDL from Another Computer
Eventually, you'll want clients on other computers to use your web service. Such clients
need access to the web service’s WSDL, which they would access with the following URL:

http://host: 8080 /HugeInteger/HugeIntegerservice?WS0L

where bost is the hostname or IP address of the computer on which the web service is
deployed. As we discussed in Section 28.3.4, this will work only if your computer allows
HTTP connections from other computers—as is the case for publicly accessible web and
application servers.

28.4 Consuming a Web Service

Now that we've defined and deployed our web service, we can consume it from a client
application. A web service client can be any type of application or even another web ser-
vice. You enable a client application to consume a web service by adding a web service
reference 1o the application. This process defines the proxy class that allows the client to
access the web service.

28.4.1 Creating a Client in Netbeans to Consume the HugeInteger
Web Service

In this section, you'll use Netbeans to create a client Java deskcop GUI application, then
you'll add a web service reference to the project so the client can access the web service.
When you add the web service reference, the IDE creates and compiles the client-side
artifacts—the framework of Java code that supports the client-side proxy class. The client
then calls methods on an object of the proxy class, which uses the rest of the artifacts to
interact with the web service.

Creating a Desktop Application Project in Netbeans

Before performing the steps in this section, ensure that the HugeInteger web service has
been deployed and that the Sun Java System Application Server is running (see
Section 28.3.3). Perform the following steps to create a client Java desktop zpplication in
Netbeans:

1. Select File » New Project... to open the New Project dialog.
2. Select General from the Categories list and Java Application from the Projects list,
then click Next >.

3. Specify the name UsingHugeInteger in the Project Name field and uncheck the
Create Main Class checkbox. In 2 moment, you'll add a subclass of JFrame that
contains a main method.

4. Click Finish to create the project.
Adding a Web Service Reference to an Application

Next, you'll add a web service reference to your application so that it can interact with the
HugeInteger web service. To add a web service reference, perform the following steps.

1. Righr click the project name (UsingHugeInteger) in the Netbeans Projects tab.

2. Select New > Web Service Client... from the pop-up menu to display the New Web
Service Client dialog (Fig. 28.7).

1204 Internet & World Wide Web How to Program

Fig. 28.7 | New Web Service Client dialog.

3. In the WSDL URL field, specify the URL http: //TocaThost:8080/HugeInteger/
HugeIntegerService?wSDL (Fig. 28.7). This URL tells the IDE where to find the
web service’s WSDL description. [Note: If the Sun Java System Application Server
is located on a different compurter, replace Tocalhost with the hostname or IP
address of that computer.] The IDE uses this WSDL description to generate the
client-side artifacts that compose and support the proxy. Note that the New Web
Service Client dialog enables you to search for web services in several locations.
Many companies simply distribute the exact WSDL URLs for their web services,
which you can place in the WSDL URL field.

4. In the Package field, specify com.deitel.iw3htp4.ch28.usinghugeinteger as
the package name.

5. Click Finigh to dismiss the New Web Service Client dialog.

In the Netbeans Projects tab, the UsingHugeInteger project now contains a Web Ser-
vice References folder with the HugeInteger web service’s proxy (Fig. 28.8). Note that
the proxy’s name is listed as HugeIntegerService, as we specified in line 11 of Fig. 28.2.

When you specify the web service you want to consume, Netbeans accesses the web
service’s WSDL information and copies it into a file in your project (named HugeInte-
gerService.wsd] in this example). You can view this file from the Netbeans Files tab by
expanding the nodes in the UsingHugeInteger project’s xm1-resources folder as shown
in Fig. 28.9. If the web service changes, the client-side artifacts and the client’s copy of the
WSDL file can be regenerated by righe clicking the HugeIntegerService node shown in
Fig. 28.8 and selecting Refresh Client.

Web Services 1205

Fig. 28.9 | Locating the HugeIntegerService.wsd] file in the Netbeans Files tab.

You can view the IDE-generated client-side artifacts by selecting the Netbeans Files
tab and expanding the UsingHugeInteger project’s build folder as shown in Fig. 28.10.

Fig. 28.10 | Viewing the HugeInteger web service’s client-side artifacts generated by
Netbeans.

1206 Internet & World Wide Web How to Program

28.4.2 Consuming the HugeInteger Web Service

For this example, we use a GUI application to interact with the web service HugeInteger
web service. To build the client application’s GUI, you must first add a subclass of JFrame
to the project. To do so, perform the following steps:

. Right click the project name in the Netbeans Project tab.

. Select New > JFrame Form... to display the New JFrame Form dialog.

1

2

3. Specify UsingHugeInteger]Frame in the Class Name field.

4. Specify com.deitel.iw3htpa.ch28.hugeintegerclient in the Package field.
5

. Click Finish to close the New JFrame Form dialog.

Next, use the Netbeans GUI design toals to build the GUI shown in the sample screen
captures at the end of Fig. 28.11, ‘

The application in Fig. 28.11 uses the HugeInteger web service to perform compu-
tations with positive integers up to 100 digits long, To save space, we do not show the Net-
beans autogenerated initComponents method, which contains the code that builds the
GUI components, positions them and registers their event handlers. To view the complere
source code, open the UsingHugeIntegerlFrame. java file in this example’s folder under
src\java\com\deitel\iwlhtp4\ch28\hugeintegerclient. Netbeans places the GUI
component instance-variable declarations at the end of the class (lines 326-335). Java
allows instance variables to be declared anywhere in 2 class’s body as long as they are placed
ourside the class’s methods. We continue to declare our own instance variables at the top
of the class.

Lines 6-7 import the classes HugeInteger and HugeIntegerService that enable the
client application to interact with the web service. We include these import declarations
only for documentation purposes here. These classes are in the same package as Using-
HugeIntegerJFrame, so these import declarations are not necessary. Notice thar we do
not have import declarations for most of the GUI components used in this example.
When you create a_GUI in Netbeans, it uses fully qualified class names (such as
javax.swing.Frame in line 11}, so import declarations are unnecessary.

Lines 13—14 declare the variables of type HugeIntegerService and Hugelnteger,
respectively. Line 24 in the constructor creates an object of type HugeIntegerService.
Line 25 uses this cbject’s getHugeIntegerPort method 1o obtain the HugeInteger proxy
object that the application uses to invoke the web service’s method.

Lines 165—166, 189-190, 213-214, 240-241 and 267-268 in the various JButton
event handlers invoke the HugeInteger web service’s web methods. Note that each call is
made on the local proxy object that is referenced by hugeIntegerProxy. The proxy object
then communicates with the web service on the client’s behalf.

The user enters two integers, each up to 100 digits long. Clicking any of the five JBut-
tons causes the application to invoke a web method to perform the corresponding task and
return the result. Qur client application cannot process 100-digit numbers directly.
Instead the client passes String representarions of these numbers to the web service's web
methods, which perform tasks for the client. The client application then uscs the return
value of each operation to display an appropriate message.

Web Services 1207

em%tsJTextArea setText(wun R
sgerProxy. add{ fifstNumber, secondiumber

Fig. 28.11 | Client desktop application for the HugeInteger web service. (Part | of 6.)

1208 Internet & World Wide Web How to Program

Fig. 28.11 | Client desktop application for the HugeInteger web service. (Part 2 of 6.)

Web Services 1209

boo1ean Eesult w
hugeInteger?raxy smal'ler(4 rstnunber secondﬂmber b ¥

Fig. 28 1 | Client desktop appllcatlon for the HugeInteger web service. (Part 3 of 6.)

1210 Internet & World Wide Web How to Program

Fig. 28.11 | Client desktop application for the HugeInteger web service. {Part 4 of 6.)

Web Services 125l

. Soreaker Than

é@ 833999495999897898

b

e the Pl

EmmmmMmle&ﬂsmk
T e v e

tHsing the upelntege: W

mmmmmpmiwmsm

¥
3

. ; . il
954419309 990TFITI00E it not igssthan

i i

Part 5 of 6.)

Fig. 28.11 | Client desktop application for the HugeInteger web service. (

1212 Internet & World Wide Web How to Program

porurdy

B399989949999989%594 is not equai fo 1

T WAtk i SRS 5L g R s e SR
Fig. 28.11 | Client desktop application for the HugeInteger web service. (Part 6 of 6.)

28.5 SOAP

SOAP (Simple Object Access Protocol) is a platform-independent protocol that uses XML
to facilitate remote procedure calls, typically over HT'TP. SOAP is one common protocol
for passing information between web service clients and web services. The protoco! that
transmits request-and-response messages is also known as the web service’s wire format or
wire protocol, because it defines how information is sent “along the wire.”

Each request and response is packaged in a SOAP message (also known as a SOAP
envelope)—an XML “wrapper” containing the information that a web service requires to
process the message. SOAP messages are written in XML so that they are pladform inde-
pendent. Many firewalls—security barriers that restrict communication among net-
works—are configured to allow HTTP traffic to pass through so that clients can browse
websites on web servers behind firewalls. Thus, XML and HTTP enable computers on dif-
ferent platforms to send and receive SOAP messages with few limitations.

The wire format used to transmit requests and responses must support all data types
passed between the applications. Web services also use SOAP for the many dara types it
supports. SOAP supports primitive types {e.g., int) and their wrapper types {e.g,
Integer), as well as Date, Time and others. SOAP can also transmit arrays and objects of
user-defined types (as you'll see in Section 28.8). For more SOAP information, visit
www.w3.org/TR/soap/.

When a program invokes a web method, the request and all relevant information are
packaged in a SOAP message and sent to the server on which the web service resides. The
web service processes the SOAP message's contents {contained in a SOAP envelope),
which specify the method that the client wishes to invoke and the method’s arguments.
This process of interpreting a SOAP message’s contents is known as parsing a SOAP mes-
sage. After the web service receives and parses a request, the proper method is called with
any specified arguments, and the tesponse is sent back to the client in another SOAP mes-
sage. The client-side proxy parses the response, which contains the result of the method
call, and returns the result to the client application.

Figure 28.5 used the HugeInteger web service’s Tester web page to show the result
of invoking HugeInteger’s add method with the values 99999999999999999 and 1. The
Tester web page also shows the SOAP request and response messages (which were not
previously shown). Figure 28.12 shows the SOAP messages in the Tester web page fram
Fig. 28.5 after the calculation. In the request message from Fig. 28.12, the text

<nsl:add>
<first>99999999999999999</first>

Web Services 1213

<second>1</second>
</nsl:add>

specifies the method to call (add), the method’s arguments (first and second) and the
arguments’ values (99999999999993999 and 1). Similarly, the text

<nsl:addResponse>
<return>100000000000000000</return>
</nsl:addResponse>

from the response message in Fig, 28.12 specifies the return value of method add.
As with the WSDL for a web service, the SOAP messages are generated for you auto-
matically, so you don’t need to understand the details of SOAP or XML to take advantage

of it when publishing and consuming web services.

£ Mo e s Uk e - W

| [e
G e iarersson

T Method mvocation trace

SOAP Request

C2xml versigheil 0" escodingetUTE-297>
<saapenv:iinvelcpe xu;ns:raa:eav-'bttp:/!lchemns.xn:scug‘cxw/suap!cnvuxap-f' po 3t EEY
<soapeny i Sodyy
«nwiadd>
CEAraT»RRdRFINNIRIRGISI,/ LT
<aesoni»2</3econd>
</naliadd>
</ scapeny;Sady>
<7 zcapenriinvelope’

SOAP Response

<twisl warsicne™l. % gosedinge"UTE-2"7>
cacapenv:iLvelope xmi:s:ae;penv-'hsz://-cneuas.xnlscap.ozu/saa:fnnvulupe}” XBLE
<anapeny?Bady>
<na.:addRespocse>
<return>IG0000005000890000¢/ return>

Fig. 28.12 | SOAP messages for the HugeInteger web service's add method as shown by
the Sun Java System Application Server's Tester web page.

28.6 Session Tracking in Web Services

Section 26.5 described the advantages of using session tracking to maintain client state inf-
ormation so you can personalize the users’ browsing experiences. Now we'll incorporate

1214 internet & World Wide Web How to Program

session tracking into a web service. Suppose a clienc applicarion needs o call several meth-
ods from the same web service, possibly several times each. In such a case, it can be bene-
ficial for the web service to maintain state information for the client, thus eliminating the
need for client information to be passed between the client and the web service multiple
times. For example, a web service that provides local restaurant reviews could store the cli-
ent user’s street address during the initial request, then use it to return personalized, local-
ized results in subsequent requests. Storing session information aiso enables a web service
to distinguish between clients.

28.6.1 Creating a Blackjack Web Service

Qur next example is a web service thar assists you in developing a blackjack card game.
The Blackjack web service (Fig. 28.13) provides web methods to shuffle 2 deck of cards,
deal a card from the deck and evaluate a hand of cards. After presenting the web service,
we use it to serve as the dealer for a game of blackjack (Fig, 28.14). The Blackjack web
service uses an HttpSession object to maintain a unique deck of cards for each client app-
lication. Several clients can use the service at the same time, but web method calls made
by a specific client use only the deck of cards stored in that client’s session. Qur example
uses the following blackjack rules:

tivo cards each are dealt to the dealer and the player. The player’s cards are dealt face
up. Only the first of the dealer’s cards is dealt face up. Each card has a value. A card
numbered 2 through 10 is worth its face value. Jucks, queens and kings each count as
10. Aces can count as 1 or 1 1—whichever value is more beneficial to the player (as we
will soon sec). If the sum of the players two initial cards is 21 (i.e., the player was
dealt a card valued at 10 and an ace, which counts as 11 in this situation), the player
bas “blackjack” and immediately wins the game—if the dealer does not also have
blackjack (which would result in a “push"—i.e., a tie). Otherwise, the player can
begin raking additional cards one ar a time. These cards are dealt face up, and the
player decides when to siop taking cards. If the player “busts” (i.e., the sum of the
player’s cards exceeds 21), the game is over, and the player loses. When the player is sa-
tisfed with the current set of cards, the player “Stands” (i.e., stops taking cards), and
the dealer’s hidden card is revealed. If the dealer’s total is 16 or less, the dealer must
take another card; otherwise, the dealer must stand. The dealer must continue taking
cards until the sum of the dealer’s cards is greater than or equal to 17. If the dealer
exceeds 21, the player wins. Otherwise, the hand with the higher point total wins. If
the dealer and the player bave the same point total, the game is a “push,” and no one
wins. Note that the value of an ace for a dealer depends on the dealer’s other card(s)
and the casinos house rules. A dealer typically nust bit for totals of 16 or less and must
stand for totals of 17 or more. However, for a “Soft 17" —a hand with a rotal of 17
with one ace counted as 11—some casinos require the dealer to hit and some require
the dealer 1o stand (we require the dealer to stand). Such a hand is known as 2 “Soff
17" because taking another card cannot bust the hard,

The web service (Fig. 28.13) stores each card as a String consisting of a number, 1-
13, representing the card’s face (ace through king, respectively), followed by a space and a
digit, 0-3, representing the card’s suit (hearts, diamonds, clubs or spades, respectively). For
example, the jack of clubs is represented as "11 2", and the two of hearts is represented as
"2 0". To create and deploy this web service, follow the steps presented in
Sections 28.3.2-28.3.3 for the HugeInteger service.

Web Services 1215

'13ck'ack java

yax 3ws Heb?apam,,
mport javax.servlet.http. HttpSessaon,
mport javax.servlet.http.HttpServietRequest;
mport javax.xm].ws.WebServiceContext;
mport javax g hand1er MessageContext

”BTackJack" serv1ceName = "BTack)ackService“

private MessageContext messageContext; // used in session tracking
rivate HtrpSession session; // stores attributes of the session

“dealCard”)

fray ist< ﬁg‘> deck =
(ArrayList< String >) session.getAttribute("deck

S H FER T i O i Lre:
// obtain the HttpSession object to store deck for current clien
essageContext = webServiceContext.getMessageContext();
session = ((HttpServletReguest) messageContext.get(
MessageContext.SERVLET _REQUEST)).getSession()

stm: <= 3‘ swites Y /o 190;#
B T st) // add each

Fig. 28.13 | Blackjack web service that deals cards and e« “tes hands. (Part | of 3.)

1216 Internet & World Wide Web How to Program

// add this deck to user's session
e§§ion.setAttribute(_"deck”, deck)

end

Fig. 28.13 | Blackjack web service that deals cards and evaluates hands. (Part 2 of 3.)

Web Services 1217

: hﬁemm;ﬂiw‘?m T
g’lgh;s: Blackjack: = . .o :

Fig. 28.13 | Blackjack web service that deals cards and evaluates hands. (Part 3 of 3.)

Session Tracking in Web Services

The Blackjack web service client first calls method shuffle (lines 40—71) to shuflle che
deck of cards. This method also places the deck of cards into an HttpSession object that
is specific to the client that called shuffle. To use session rracking in a Web service, you
must include code for the resources thar maintain the session stare information. In the
past, you had to write the sometimes tedious code 1o create these resources, JAX-WS, how-
ever, handles this for you via the @Resource annotation. This annotation enables wools like
Netbeans to “inject” complex support code into your class, thus allowing you to focus on
your business logic rather than rthe support code. The concepr of using annotations to add
code that supports your Jasses is known as dependency injection. Annotations like @web-
Service, @ebMethod and @WebParam also perform dependency injection.

Line 20 injects a WebServiceContext object into vour class. A WebServiceContext
objcct enables a web service to access and maintain informarion for a specific request, such
as session state. As you look through the code in Fig. 28.13, you'll notice that we never
create the WebServiceContext object. All of the code necessary to create it is injected into
the class by the @Resource annoration. Linc 21 declares a variable of interface type
MessageContext that the web service will usc fo obrain an HrrpSession object for the cur-
rent client. Line 22 declares the HrtpSession variable that the web service will use to
manipulate the session state information.

Line 44 in method shuffle uses the WebServiceContext object that was injected in
line 20 to obrain a MessageContext object. Lines 4546 then use the MessageContext
object’s get method ro obtain the HttpSession object for the current client. Method get
recejves a constant indicating what to get from the MessageContext. In this case, the
constant MessageContext.SERVLET_REQUEST indicates that we'd like to get the
HttpServietReguest object for the current client. We then call method getSession 1o
get the HttpSession object from the HttpServietRequest object.

Lines 49-70 generate an ArrayList representing a deck of cards, shuffle the deck and
store the deck in the client’s session object. Lines 5153 use nested loops to generate
Strings in the form "face swit" ta represent cach possible card in che deck. Lines 59-67
shuffle the deck by swapping each card with another card selected at random. Line 70
inserts the ArrayList in the session object to maintain the deck between method calls
from a particular client.

1218 Internet & World Wide Web How to Program

Lines 25-37 define method dealCard as a web method. Lines 30-31 use the session
object to obtain the "deck” session attribute that was stored in line 70 of method shuffle.
Method getAttribute takes as a parameter a String that identifies the Object to obrain
from the session state. The HttpSession can store many Objects, provided thar each has
a unique identifier. Note that method shuffle must be called before method deatCard is
called the first time for a client—otherwise, an exception occurs at line 33 because get-
Attribute rerurns nu1l at lines 30-31. After obtaining the user’s deck, dealCard gets the
top card from the deck (line 33), removes it from the deck (line 34) and returns the card’s
value as a String (line 36). Without using session tracking, the deck of cards would need
to be passed back and forth with each method call. Session tracking makes the dealCard
method easy to call {it requires no arguments) and eliminates the overhead of sending the
deck over the network multiple times.

Method getHandvalue (lines 74—116) determines the total value of the cards in a
hand by trying to attain the highest score possible withour going over 21. Recall chat an
ace can be counted as either 1 or 11, and all face cards counr as 10. This method does not
use the session objecr because the deck of cards is not used in this method.

As you'll soon see, the client application maintains a hand of cards as a String in
which each card is separated by a tab characrer. Line 78 tokenizes the hand of cards (rep-
resented by hand) into individual cards by calling String method sp1it and passing to it
a String containing the delimiter characters (in this case, just a tab). Method spit uses
the delimiter characters to separate tokens in the String. Lines 83-103 count the value
of each card. Lines 86-87 retrieve the first integer—the face—and use that value in the
switch statement {lines 89—102). If the card is an ace, the method increments variable
aceCount. We discuss how this variable is used shortly. If the card isan 11, 12 or 13 (jack,
queen or king), the method adds 10 to the total value of the hand (line 97). If the card is
anything else, the method increases the rotal by that value (line 100).

Because an ace can have either of two values, additional logic is required to process
aces. Lines 106-113 of method getHandvalue process the aces after all the other cards. If
a hand contains several aces, only one ace can be counted as 11. The condicion in line 109
determines whether counting one ace as 11 and the rest as | will resulr in a toral thar does
not exceed 21. If this is possible, line 110 adjusts the total accordingly. Otherwise, line 112
adjusts the total, counting each ace as 1.

Method getHandvalue maximizes the value of the current cards without exceeding
21. Imagine, for example, that the dealer has a 7 and receives an ace. The new total could
be either 8 or 18. However, getHandValue always maximizes the value of the cards without
going over 21, so the new total is 18.

28.6.2 Consuming the Blackjack Web Service

The blackjack application in Fig, 28.14 keeps track of the plaver’s and dealer’s cards, and
the web service tracks the cards that have been dealt. The constructor (lines 34--83) sets
up the GUI (line 36), changes the window’s background color (line 40) and creates the
Blackjack web service’s proxy object (lines 46-47). In the GUI, each player has 11 JLab-
e1s—the maximum number of cards that can be dealt without auromatically exceeding 21
(i.e., four aces, four twos and three threes). These JLabels are placed in an Arraylist of
JLabetls, (lines 59-82), so we can index the ArrayList during the game to determine the
JLabel thar will display a particular card image.

Web Services 1219

With JAX-WS 2.0, the client application must indicate whether it wants to allow the
web service to maintain session information. Lines 50-51 in the constructor perform this
task. We first cast the proxy object to interface type BindingProvider. A BindingPro-
vider cnables the client to manipulate the request information that will be sent to the
server. This information is stored in an object that implements interface RequestContext.
The BindingProvider and RequestContext are part of the framework that is created by
the IDE when you add a web service client to the application. Next, lines 50-51 invoke
the BindingProvider’s getReguestContext method to obtain the RequestContext
object. Then the RequestContext’s put method is called to set the property BindingPro-
vider.SESSION_MAINTAIN.PROPERTY to true, which enables session tracking from the
client side so that the web service knows which client is invoking the service’s web
methods. ’

mport javax.xml.ws.BindingProvider;
1t import com.deitel._iw3htp4.ch28.blackjackclient.Blackjack;
4. import com.deitel .iw3htp4.ch28.b'lackja.ckc'lient.B]ackjackService-

private B'IéckjackService blackjackService; // used to obtain proxy
Jorivate Blackjack blackjackProxy; // used to access the web servic
S

Fig. 28.14 | Blackjack game that uses the Rlackjack web service. (Part | of 10.)

1220 Internet & World Wide Web How to Program

// create the ObJECtS for accessing the Biagk]ack"web servic
shlackjackService = new BlackjackService();

5 b1ack3ackProxy b'lac}(;iackServi ce.getBlackjackPortQ;

‘// enable sesswn tr'ackmg
- € { BindingProvider) blackjackProxy 3.getRequestContext().put
B1nd1ngProv1der‘ SESSION_MAINTAIN_PROPERTY, true)

Fig. 28.14 | Blackjack game that uses the Blackjack web service. (Part 2 of 10.)

Web Services 1221

= blackjackProxy.getHandValue(dealerCards);
playersTotal = blackjackProxy.getHandValue(playerCards J;

Fig. 28.14 | Blackiack game that uses the Blackjack web service. (Part 3 of 10.)

1222 Internet & World Wide Web How to Program

X f/ spades
thetter =

g1 "Lays all) player cards and shows appropr‘!ate messagel
,vﬁ‘id gameOver{ GameStatus winner)

ﬁng;{] cards dealerCards. spht("\t"),

; “{zy‘ b'lack]ackProxy s cards _
E 1 = 0; 1 < cards.length; i+ 3700
1ayCard(i, cards{ i]J; .

Fig. 28.14 | Blackjack game trat uses the Blackjack web service. {Part 4 of 10.)

Web Services 1223

LSRRy - RINRL S &] agiian
at dealersTotal = blackjackProxy.getHandvalue(deaterCards)
Hnt playersTotal = blackjackProxy.getHandvalue(playerCards);

T e 3thtmponents method is autogenerated by Netbeans and is ca¥l

/ from the constructor to initialize the GUI. This method is not shown

/ here to save space. Open BlackjackGameJFrame. java in this :
‘example's folder to view the complete generated code (11n§§s 221~

Flg 28, I4 | Blackjack game that uses the Blackjack web service. {Part 5 of 10.)

1224 Internet & World Wide Web How to Program

dealerCards =
‘i splayCard(# éﬁpr’i&? First card:’
“d = b]ack;atkProxy dea?Carg() // deal secend hard

/1 deter
“int dealersTotal = black;ackProxy getHandVaIue(dea1erCards)

Fig. 28.14 | Blackjack game that uses the Blackjack web service, (Part 6 of 10.)

Web Services 1225

-} A end

- /7 begins appHicath
public static: veid ma

{ C R
java. awt. EventQuesue:
new Runnable

Jiabel p

private javax.swing.JLabel.

private javax.swing.JLabe] pla
“private javax.swing, Jahel gl

Fig. 28.14 | Blackjack game that uses the Blackjack web service. (Part 7 of 10.)

1226 Internet & World Wide Web How to Program

bl

. Yo wiest
| lmder1)
Pyt 20

Fig. 28.14 | Blackjack game that uses the Blackjack web service. (Part & of 10.)

Web Services 1227

Y fose,
Beater: 71

Prayer: 17

B Hlackjpc

Fig. 28.14

1228 Internet & World Wide Web How to Program

SR

iy i

B

Fig. 28.14 | Blackjack game that uses the Blackjack web service. (Part 10 of 10.)

Method gameOver (lines 187-215} displays all the dealer’s cards, shows the appro-
priate message in statusJLabel and displays the final point totals of both the dealer and
the player. Method gameOver receives as an argument a member of the GameStatus enu-
meration (defined in lines 25-31). The enumeration represents whether the player tied,
lost or won the game; its four members are PUSH, LOSE, WIN and BLACKJACK.

When the player clicks the Deal JButton, method deallButtonActionPerformed
(lines 567—618) clears all of the Jtabels that display cards or game status information.
Next, the deck is shuffled (line 581), and the player and dealer receive rwo cards each (lines
584-595). Lines 602603 then total each hand. If the player and the dealer both obtain
scores of 21, the program calls method gameOver, passing GameStatus. PUSH (line 607). If
only the dealer has 21, the program passes GameStatus.LOSE to method gameOver (line
609). If only the player has 21 after the first two cards are dealt, the program passes
GameStatus . BLACKJACK to method gameOver (line 611).

If deal3ButtonActionPerformed does not call gameOver, the player can take more
cards by clicking the Hit 3Button, which calls hitIButtonActionPerformed in lines 543—
564. Each time a player clicks Hit, the program deals the player one more card and displays
it in the GUL If the player exceeds 21, the game is over and the player loses. If the player
has exactly 21, the player is not allowed to take any more cards, and method dealerPlay
(lines 86-131) is called, causing the dealer to take cards until the dealer’s hand has a value
of 17 or more (lines 98-106). If the dealer exceeds 21, the player wins (line 114); other-
wise, the values of the hands are compared, and gameOver is called with the appropriate
argument (lines 120-125).

Clicking the Stand JButton indicates that a player does not want to be dealt another

. card. Method standlButtonActionPerformed (lines 533—540) disables the Hit and Stand
buttons, enables the Deal button, then calls method dealerPlay.

Web Services 1229

Method displayCard (lines 134-184) updates the GUI to display a newly dealt card.
The method takes as arguments an integer index for the JLabel in the ArrayList that
must have its image set and a String representing the card. An empty String indicates
that we wish to display the card face down. If method displayCard receivesa String that’s
not empty, the program extracts the face and suit from the String and uses this informa-
tion to display the correct image. The switch statement (lines 159-173} converts the
number representing the suit to an integer and assigns the appropriate character to suit-
Letter (h for hearts, d for diamonds, c for clubs and s for spades). The character in suit-
Letter is used to complete the image’s filename (lines 176-178). '

In this example, you learned how to set up a web service to support session handling
so that you could keep track of each client’s session state. You also learned how to indicate
from a desktop client application that it wishes to take part in session tracking. You'll now
learn how to access a database from a web service and how to consume a web service from
a client web application.

28.7 Consuming a Database-Driven Web Service from a
Web Application

Ouir prior examples accessed web services from desktop applications created in Netbeans.
However, we can just as easily use them in web applications created with Netbeans. In fact,
because web-based businesses are becoming increasingly prevalent, it is common for web
applications to consume web services. In this section, we present an airline resetvation web
service that receives information regarding the type of seat a customer wishes to reserve and
makes a reservation if such a seat is available. Later in the section, we present a web appli-
cation that allows a customer to specify a reservation request, then uses the airline reserva-
tion web service to artempt to execute the request.

28.7.1 Configuring Java DB in Netbeans and Creating the Reservation
Database

In this example, our web service uses a Reservation database containing a single table
named Seats to locate a seat matching a client’s request. To build the Reservation data-
base, review the steps presented in Section 27.2.1 for building the AddressBook database.
This chapters examples directory contains a SQL script to build the Seats table and pop-
ulate it with sample data. The sample data is shown in Fig, 28.15.

Fig. 28.15 | Seats table’s data. (Part | of 2.)

1230 internet & World Wide Web How to Program

 Middle. g
Window: : Q5
0

Fig. 28.15 | Seats table’s data. (Part 2 of 2.)

Creating the Reservation Web Service :

You can now create a web service that uses the Reservation database (Fig. 28.16). The
airline reservation web service has a single web method—reserve (lines 26-78)—which
searches the Seats table to locate a seat matching a user’s request. The method takes two
arguments-—a String representing the desired seat type (i.e., "Window”, "Middle" or
"Aisle") and a String representing the desired class type (i.e., "Economy" or "First"). If
it finds an appropriate seat, method reserve updates the database to make the reservation
and returns true; otherwise, no reservation is made, and the method returns false. Note
that the statements at lines 34-39 and lines 44-48 that query and update the database use
objects of JDBC types ResuTtSet and PreparedStatement,

Software Engineering Observation 28.1

¥ [sing PreparedStatements to create SQL statements is highly recommended to secure against
W so-called SQL injection attacks in which executable code is inserted SQL code. The site
www, owasp.org/index. php/Preventing_SQL_Injection_in_Java Prauides a summary of
SQL injection attacks and ways to mitigate against them..

Our database contains four columns—the seat numbser (i.e., 1-10), the seat type (i.e.,
Window, Middle or Aisle), the class type (i.c., Economy or First) and a column containing
either 1 {true) or 0 (false) to indicate whether th: seat is taken. Lines 34—~39 retrieve the
seat numbers of any available seats matching the requested seat and class type. This state-
ment fills the resultSet with the results of the query

SELECT “NUMBER"
FROM "SEATS"
WHERE ("TAKEN" = 0) AND ("TYPE" = rype) AND ("CLASS" = class)

The parameters gype and class in the query are replaced with values of method reserve's
seatType and classType parameters. When you use the Netbeans tools to create a dara-
base table and its columns, the Netbeans tools automatically place the table and columa
names in double quotes. For this reason, you must place the table and column names in
double quotes in the SQL statements that interact with the Reservation database.

If resultSet is not empty (i.e., ar least one seat is available that matches the selected
criteria), the condition in line 42 is true and the web service reserves the first matching
seat number. Recall that ResuTtSet method next returns true if 2 nonempty row exists,
and positions the cursor on that row. We obtain the seat number (line 44) by accessing

Web Services 1231

resultSet’s first column (i.e., resultSet.getInt(1)—the first column in the row).
Then lines 45-48 configure a PreparedStatement and execute the SQL:

UPDATE "SEATS"
SET "TAKEN" = 1
WHERE ("NUMBER" = number)

which marks the seat as taken in the database. The parameter number is replaced with the
value of seat. Method reserve returns true (line 49) to indicate that the reservation was
successful. If there are no matching seats, or if an exception occurred, method reserve
returns false (lines 52, 57, 62 and 75) to indicate that no seats matched the user’s request.

mpoi:t java sql.
mport Java sq1. ps
3 mport Java sq Briy

‘private static
private. Conmé
‘private Prepa

Fig. 28.16 | Airline reservation web service. (Part 1 of 2.)

1232 Internet & World Wide Web How to Program

int seat = resultSe .
reserveSeat = connection.prepareStatement(

. “UPDATE \"SEATS\™ SET \"TAKEN\"=1 WHERE \'NUMBER\"=?" };
_reserveSeat.setInt{ 1, seat);

o rgserveSeat.executeUbdateO H

i e
Fig. 28.16 | Airline reservation web service. (Part 2 of 2.)

28.7.2 Creating a Web Application to Interact with the Reservation
Web Service

This section presents a ReservationClient web application that consumes the Reserva-
tion web service. The application allows users to select seats based on class ("Economy™ ot
“First") and location ("Aisle", "Midd1e" or "window"}, then submit their requests to the
aitline reservation web service. If the database request is not successful, the application
instructs the user to modify the request and try again. The application presented here was
built using the techniques presented in Chapters 26-27. We assume that you've already

!

Web Services 1233

read those chapters, and thus know how to build a web application’s GUL. create event
handlers and add properties to 2 web application’s session bean (Section 27.2.1).

Reserve. jsp

Reserve. jsp (Fig. 28.17) defines two DropDownLists and a Button. The seatTypeDrop-
Down (lines 26-31) displays all the seat types from which users can select. The classType-
DropDownList (lines 32-37) provides choices for the class type. Users click the
reserveButton (lines 38-42) to submit requests after making selections from the Drop-
DownLists. The page also defines three Labels—instructionLabel (lines 22-25) to dis-
play instructions, errorLabel (lines 43-47) to display an appropriate message if no seat
matching the user’s selection is available and successLabel (lines 48—51) to indicate a suc-
cessful reseevation. The page bean file (Fig. 28.18) attaches event handlers to seatType-
DropDown, ¢1assTypeDropDown and reserveButton.

. <Pxml wersiqﬁé‘-’l.' ”

Fig. 28.17 | |SPthat allows a user to select a seat. (Part | of 3.)

1234 Internet & World Wide Web How to Program

[aime E} [econcmy % [-ﬂuma_b_l

i3 j

i

Fig. 28.17 | |SP that allows a user to select a seat. (Part 2 of 3.)

Web Services 235

Q: ﬁ ‘ﬁ*@m '@Tﬂd’o o.

Plesse actoct the seat type and clazs 1o Tensrve: | Aule "@} TEcanomy @] [|
This type of seatis not svaiistio. Please modify your raquest srd try again.

Fig. 28.17 | |SPthat allows a user to select a seat. {Part 3 of 3.)

Reserve. java

Figure 28.18 contains the page bean code that provides the logic for Reserve. jsp. As dis-
cussed in Section 26.5.2, the class that represents the page’s bean extends AbstractPage-
Bean. When the user selects a value in one of the DropDownLi sts, the corresponding event
handler—cTassTypeDropDown_processValueChange (lines 262-267) or seatTypeDrop-
Down_processValueChange (lines 270-275)—is called to set the session properties seat-
Type and classType, which we added to the web application’s session bean. The values of
these properties are used as the arguments in the call to the web service’s reserve method.
When the user clicks Reserve in the JSP, the event handler reserveButton_action (lines
278-311) executes. Lines 282-284 use the proxy object (created in lines 38-39) to invoke
the web service’s reserve method, passing the selected seat type and class type as argu--
ments. If reserve returns true, lines 288-293 hide the GUI components in the JSP and
display the successLabel (line 292) to thank the user for making a reservation; otherwise,
lines 297-302 ensure that the GUI components remain displayed and display the error-
Label {line 302) to notify the user that the requested seat type is not available and instruct
the user to try again. :

ForE FE

Fig. 28.18 | Page scope backing bean class for seat reservation client. (Part | of 3.)

1236 Internet & World Wide Web How to Program

'I mpor't rese rvat1 onse I"V'l ce RESE rvat1 DﬂSEF\H ce H

 private i:m: phcehamr’ P S
,7pr1vate ReservationService reservat1onServ1ce' 7/ reference to service
private Reservation reservationServiceProxy; // reference to proxy |

%ﬂf:? ‘private void _init() thrﬁdﬁ‘fkééb%iéﬁhfw
- -
b

seat?ypel}ropwﬂwefwkapﬁm seﬁkﬂ: 10

new com.sun.webui.jsf, model. Bp£1en[} E IR _ L
new com.sun,webui. jsf model . Oprion(“Aiste", "Aisle™), -
new com.sun. webu1 jsf uade% 09!10&§;*N16612 “Middle”),

'reservat1oh5ebvice ~ new Reservat1on$erv1ce().
reservat1on$erv1cePrnxy = reservationService. getReservat1onPort()

} ff mm

"5”:// L1nes 42 260 of the autogenerated code have been removed to sav
‘i// space The comp1ete code is5 available in this example’s fo]der

(/i store se’kected ﬂasx "iss;__

ge£5ess{oh3ean1()'sefETESSfype(“
¢ string) classTypeDropDown.getSetected());
¥ // end merhod classfmﬁfwws‘fa}mcmge

i swa mimd m

e getSess1onBean1() eefSeatType(
(String) seatTypeDropoown getSelected());
mathod

boo]ean reserved = reservat1onServ1ceProxy reserve('
getSessionBeanl().getSeatType(),
getSess1on8ean1() getClassType())

Fig. 28.18 | Page scope backing bean class for seat reservation client, (Part 2 of 3.)

Web Services 1237

return nuﬂ_.'i-.)
11 e class Rexerve

Fig. 28.18 | Pape scope backing bean class for seat reservation client. (Part 3 of 3.)

28.8 Passing an Object of a User-Defined Type to a Web
Service

The web methods we've demonstrated so far each receive and return only primitive values
or Strings. Web services also can receive and return objects of user-defined rypes—known
as custom types. This section presents an EquationGenerator web service that generates
random arithmetic questions of type Equation. The client is a math-tutoring desktop app-
lication in which the user selects the type of mathematical question to atrempt (addition,
subtraction or multiplication) and the skill level of the user—level 1 uses one-digit numbers
in each question, fevel 2 uses two-digit numbers and level 3 uses three-digit numbers. The
client passes this informarion to the web service, which then generates an Equation consist-
ing of random numbers with the proper number of digits. The client application reccives
the Equation, displays the sample question to the user in a Java application, allows the user
to provide an answer and checks the answer to determine whether it is correct.

Serialization of User-Defined Types

We mentioned earlier thar all types passed to and from SOAP web services must be sup-
ported by SOAP. How, then, can SOAP support a type thar is not even created yer?
Custom types that are sent to or from a web service are serialized into XML formar. This
process is referred to as XML serialization. The process of serializing objects ro XML and
descrialiing objects from XML is handled for you automatically.

1238 Internet & World Wide Web How to Program

Requirements for User-Defined Types Used with Web Methods
A class that is used to specify parameter of return types in web methods must meet several
requirements:

1. It must provide a public default or no-argument constructor. When a web ser-
vice or web service consumer receives an XML serialized object, the JAX-WS 2.0
Framework must be able to call this constructor when deserializing the object
(i.e., converting it from XML back to a Java object).

2. Instance variables that should be serialized in XML format must have public sez
and ger methods to access the private instance variables {recommended), or the
instance variables must be declared public (not recommended).

3. Non-public instance variables that should be serialized 1 ust provide both set
and ger methods (even if they have empty bodies); otherwise, they are not serial-
ized.

Any instance variable that is not serialized simply receives its default value (or the value
provided by the no-argument constructor) when an object of the class is deserialized.

Common Programming Error 28.3

A runtime error occurs if an attemps is made to deserialize an object of a class that does nor lmve
a default or no-argument constructor.

Defining Class Equation

Figure 28.19 defines class Equation. Lines 18-31 define a constructor that takes three arg-
uments—two ints representing the left and right operands and a String thar represents
the arithmetic operation to petform. The constructor sets the leftOperand, rightOperand
and operationType instance variables, then calculates the appropriate result. The no-arg-
ument constructor (lines 13-16) calls the three-argument constructor (lines 18-31) and
passes default values: We do not use the no-argument constructor explicitly, but the XML
serialization mechanism uses it when objects of this class are deserialized. Because we pro-
vide a constructor with parameters, we must explicitly. define the no-argument construcror
in this class so that objects of the class can be passed to or returned from web methods.

Fig. 28.19 | Class Equation that stores information about an equation. (Part | of 3.)

Web Services 1239

7 AR i

Fig. 28.19 | Class Equation that stores information about an equation, (Part 2 of 3.)

1240 Internet & World Wide Web How to Program

Fig. 28.19 | Class Equation that stores information about an equation. (Part 3 of 3.)

Class Equation defines methods getLeftHandSide and setlLeftHandSide (lines 41—
44 and 77-80); getRightHandSide and setRightHandSide (lines 47-50 and 83-86);
getLeftOperand and setLeftOperand (lines 53-56 and 89~92); getRightOperand and
setRightOperand (lines 59—62 and 95-98); getReturnvValue and setReturnValue (lines
6568 and 101-104); and getOperationType and setOperationType {lines 71-74 and

Web Services 1241

107-110). The client of the web service does not need to modify the values of the instance
variables. However, recall that a property can be serialized only if it has both a getand a set
accessor, or if it is public. So we provided set methods with empty bodies for each of the
class’s instance variables. Method getLeftHandSide (lines 41~44) returns a String repre-
senting everything to the left of the equals (=) sign in the equation, and getRightHandSide
(lines 47~50) returns 2 String representing everything to the right of the equals (=) sign.
Method getLeftOperand (lines 53-56) returns the integer to the left of the operator, and
getRightOperand (lines 59—62) returns the integer to the right of the operator. Method
getResultvalue {lines 65-68) returns the solution o the equation, and getOperation-
Type (lines 71-74) returns the operator in the equation. The client in this example does
not use the rightHandSide property, but we included ir so future clients can use it.

Creating the EquationGenerator Web Service
Figure 28.20 presents the EquationGenerator web service, which creates random, cus-
tomized Equations. This web service contains only method generateEquation (lines 18—
31), which takes two parameters—the mathematical operation (one of "+", "-" or "*")
and an int representing the difficulty level (1-3).

atirn new Equation(. .
randomCbject .nextInc(maximum. - minimum) + m
ndomObiect.nextInt(masximu minimum)

o

Fig. 28.20 | Web service that generates random equations.

1242 Intemet & World Wide Web How to Program

Testing the EquationGenerator Web Service
Figure 28.21 shows the result of testing the EquationGenerator setvice with the Tester
web page. In Parz b of the figure, note that the web method’s return value is XML encoded.
However, this example differs from previous ones in that the XML specifies the values for
all the dara of the returned XML serialized object returned. The proxy class receives this
return value and deserializes it into an object of class Equation, then passes it to the client.
Note that an Equation object is not being passed between the web service and the
client. Rather, the information in the object is being sent as XML-encoded dara. Clients
created using Java will take the information and create a new Equation object. Clients cre-
ated on other platforms, however, may use the information differently. Readers creating
clients on other platforms should check the web services documentation for the specific
platform they are using, to see how their clients may process custom types.

Details of the EquationGenerator Web Service
Let’s examine web method generateEquation more closely. Lines 23-24 of Fig, 28.20 def-
ine the upper and lower bounds of the random numbers that the method uses to generate
an Equation. To set these limits, the program first calls static method pow of class Math—
this method raises its first argument to the power of its second argument. Variable mini-
mum’s value is determined by raising 10 to a power one less than di fficulty (line 23). This
calculates the smallest number with di fficulty digits. If difficulty is 1, minimum is 1; if
difficulty is 2, minimum is 10; and if difficulty is 3, minimum is 100. To calculate the
value of maximum (the upper bound for numbers used to form an Equation), the program
raises 10 to the power of the specified di fficulty argument (line 24). If difficulty is 1,
maximum is 10; if di FFiculty is 2, maximum is 100; and if difficulty is 3, maximum is 1000.
Lines 28—30 create and return a new Equation object consisting of two random num-
bers and the String operation received by generateEquation. Random method nextInt
returns an int that is less than the specified upper bound. generateEquation generates
operand values that are greater than or equal to minimum but less than maximum (i.e., a
number with difficulty number of digits).

EquatmnGeneratrSe b c esr

Thsis fiorm will sllow you to test your web service implernareation (WEDL Fies

To iovoke m operation, 5 the method pararseter(s) imprt boxes sod cick oo the bosos ibelnd with the
method neme.

Methods :

public shstract com daitel rwIhip4 ck?8 equmoagenesator Equation
comdokel iw3iupd.ch28.equaicog EquaionC K,
Ligeascombpaton) ¢-

Fig. 28.21 | Testing a web method that retumns an XML serialized Equation object. (Part |
of 2.)

Web Services 1243

SOAP Raquest

<7Puml varsicne*l. 0% sncsodings=UTF-877>
<scapenviZnvelope NAlnslsoapenvetherp://schenas. oalaoap.org/ soap/eavalope/” ual
<moapenyiBody> |
<nsli:generatafguations

Wbt lon>

«gifficulny»2</diftiouley>
</pai:generatelquation>
</socapany Boay>
</ soapanv:Envalope>

SOAP Respense

<7l versionsTl.0" sacoding=*UTF-A"7>
<eoapRnvIEAVAlops MElis :soAPRIYETHCTR:/ /2chenas xRl F0ap . OXY/ S0AD/ e DML SpR/ "
<BoapRnY i Body>
<nal: B 3 >
“recurn
<lafcBand3icer23 4 27</lefeinndBice>
<LlaftOp 28</ Lt v0p
<oparatienlyper+</operationTyper
<raturnValuerSo</returaValue>
<righriandSide>So</righciandiice>
<pightOperand>2 T</rightOpernuds
£/ Tecure>
</nsligensratelguationRespossny
</ scapenviBody>

Fig. 28.21 | Testing a web method that returns an XML serialized Equation object. (Part 2
of 2.) ‘

Consuming the EquationGenerator Web Service
The Math Tutor application (Fig. 28.22) uses the EquationGenerator web service. The app- .
lication calls the web service’s generateEquation method to create an Equation object.

1244 internet & World Wide Web How to Program

The tutor chen displays the left-hand side of the Equation and waits for user inpur. Line
9 declares a GeneratorService instance variable that we use to obtain an EquationGener-
ator proxy object. Lines 10-11 declare instance variables of types EquationGenerator

and Equation.

te ‘Equation equation;

e initComponents method is autogenerated by Netbeans and’ 3.
om the constructor to inftialize the GUI. This method s
“here to save space. Open EquationleneraterClientlFrame.java i
le's folde iew th plete ‘generated code (lides 37-156)

Fig. 28.22 | Math tutoring application. (Part I of 4.)

Web Services 1245

Fig. 28.22 | Math tutoring application. (Part 2 of 4.)

1246 Internet & World Wide Web How to Program

i Frminiy BT Rei o

Fig. 28.22 | Math tutoring application. (Part 3 of 4.)

Web Services 1247

Fig. 28.22 | Math tutoring application. (Part 4 of 4.)

After displaying an equation, the application waits for the user to enter an answer. The
default setting for the difficulty level is One-digit numbers, but the user can change this by
choosing a level from the Choose level JComboBox. Clicking any of the levels invokes
TevelJComboBoxItemStateChanged (lines 158-163), which sets the variable difficulty
to the level selected by the user. Although the default setting for the question type is Addi-
tion, the user also can change this by selecting an operation from the Choose operation
IComboBox. Doing so invokes operationlComboBoxItemStateChanged (lines 166-177),
which sets the String operation to the appropriate mathematical symbol.

When the user clicks the Genarate Equation IButton, method generateButton-
ActionPerformed (lines 207—221) invokes the EquationGenerator web service’s gener-
ateEquation (line 212) method. After receiving an Equation object from the web service,
the handler displays the left-hand side of the equation in equationiLabel (line 214) and
enables the checkAnswerJButton so that the user can submit an answer. When the user
clicks the Check Answer JButton, method checkAnswerJButtonActionPerformed (lines
180-204) determines whether the user provided the correct answer.

28.9 REST-Based Web Services in ASP.NET

[Note: This section assumes you already know ASP.NET (Chapter 25).] In this secrion,
we discuss how to build ASP.NET REST-based web services. Representational State
Transfer (REST) (originally propesed in Roy Thomas Fielding’s doctoral dissertation?).
refers to an architectural style for implementing web services. Though REST is not a stan-
dard, RESTful web services are implemented using web standards, such as HTTP, XML
and JSON. Each operation in a RESTful web setvice is easily identified by a unique URL.
So, when the server receives a request, it immediately knows what operation to perform.
Such web services can be invoked from a program or directly from a web browser by ent-
ering the URL in the browser’s address field. In some cases, the results of a particular ope-
ration may be cached locally by the browser. This can make subsequent requests for the
same operation faster by loading the result directly from the browser’s cache.? Many Web
2.0 web services provide RESTful interfaces.?

1. Fielding, R. T. “Architectural Styles and the Design of Network-based Software Architectures.”
<http://wew.ics.ucl.edu/~fieTding/pubs/dissertation/top.htms.

Costello, R. “REST Tutorial.” xFront, 26 June 2002 <http://www.xFront . com/REST.html>.
Richardson, L. and S. Ruby. RES Tﬁd Web Services. O'Reilly, 2007.

bl

1248 Internet & World Wide Web How to Program

We use ASP.NET here because it provides a simple way to build REST-based web
services. We take advantage of the tools provided in Microsoft’s Visual Web Developer
2005 Express, which you can download from msdn.microsoft.com/vstudio/express.
The example in this section is the web service that we consumed in our Calendar applica-
tion from Fig, 15.11 in the Ajax chapter.

28.9.1 REST-Based Web Service Functionality

Figure 28.23 presents the code-behind file for the Calendarsevice web service that you'll
build in Section 28.9.2. When creating a web service in Visual Web Developer, you work
almost exclusively in the code-behind file. This web service is designed to give the client
access to a database of events. A client can access all events that occur on a specific day
using the getItemsByDate method or request a specific event using the getItemById
method. In addition, the client can modify an event by calling the Save method.

Fig. 28.23 | REST-based event web service. (Part | of 2.)

Web Services 1249

Fig. 28.23 | REST-based event web service. (Part 2 of 2.)

Lines 37 import all the necessary libraries for b. Lines 3-5 are generated by Visual
Web Developer for every web service. Line 6 enables us to use capabilities for interacting
with databases. Line 7 imports the System.Web.Script.Serialization namespace,
which provides tools to convert NET objects into JSON strings.

Line 9 contains a WebService attribute. Actaching this attribute o a web service class
indicates that the class implements a web service and allows you to specify the web service’s
namespace. We specify http://www.deitel.com as the web service’s namespace using the
webServi ce attribute’s Namespace property.

Visual Web Developer places line 10 in all newly created web services. This line indi-
cates that the web service conforms to the Basic Profile 1.1 (BP 1.1) developed by the Web
Services Interoperability Organization (WS-I), a group dedicated to promoting interoper-
ability among web services developed on different platforms with different programming
fanguages. BP 1.1 is a document thar defines best pracrices for various aspects of web service
creation and consumption (www.WS-I.org). Setting the WebServiceBinding attribute’s
ConformsTo property to WsiProfiles.BasicProfilel_l instructs Visual Web Developer
to petform its “behind-the-scenes” work, such as generating WSDL file and the ASMX file

1250 Internet & World Wide Web How to Program

{which provides access to the web service) in conformance with the guidelines laid out in
BP 1.1. For more information on web services interoperability and the Basic Profile 1.1,
visit the WS-I web site at www.ws—-1.org.

By default, each new web service class created in Visual Web Developer inherits from
class System.web.Services.WebService (line 13). Although a web service need not do
this, class WebServi ce provides members that are useful in determining informarion about
the client and the web service itself. All methods in class CalendarService are tagged with
the WebMethod attribute (lines 21, 38 and 63), which exposes a method so that it can be
called remotely (similar to Java's @WebMethod annotation that you learned earlier in this
chapter).

Accessing the Database
Lines 16-18 create the calendarDataSet and eventsTableAdapter objects that are used
to access the database. The classes CalendarDataSet and CalendarDataSetTableAdapt-
er.EventsTableAdapter are created for you when you use Visual Web Developer's
DataSet Designer to add a DataSet to a project. Section 28.9.3 discusses the steps for this.
Our database has one table called Events containing three columns—the numeric 1D
of an event, the Date on which the event occurs and the event’s Dascription. Line 24 calls
the method Fi11ById, which fills the calendarDataSet with results of the query

SELECT 1D, Description
FROM Events
WHERE (ID = @id)

The parameter @id is replaced with the id that was passed from the client, which we pass
as an argument to the Fi118yId method. Lines 27-29 store the results of the query in the
variable of class Item, which will be defined shortly. An Item object stores the id and the
description of an event. The id and description are obrained by accessing the ID and
Description values of the first row of the calendarDataSet.

Line 40 calls the method Fi11ByDate which fills the CalendarDataSet with results
of the query

SELECT ID, Description
FROM Events
WHERE (Date = @date)

The parameter @date is replaced with the eventDate that was passed from the client,
which we pass as an argument to the Fi11ByDate method. Lines 49-54 iterate over the
rows in the calendarDataSet and store the ID and Description values in an array of
Items.

Line 65 calls method UpdateDescription which modifies the database with the
UPDATE statement.

UPDATE Events
SET Description = @descr
WHERE (ID = @id)

The parameters @descr and @id are replaced with arguments passed from the client to the
updateDescription method. .

Web Services 1251

Responses Formatted as JSON

The web service uses JSON (discussed in Section 15.7) to pass data to the client. To return
JSON data, we must first create a class to define objects which will be converted into
JSON format. Figure 28.24 defines a simple Item class that contains Descri ption and ID
members, and two constructors. The Description and ID are declared as Pub14c members
so that Item objects can be properly converted to JSON.

Common Programming Error 28.4

Properties and instance variables that are not public will not be serialized a5 part of an object's
JSON representation.

Afer the Item objects have been created and initialized with data from the database,
lines 33 and 58§ in Fig. 28.23 use the JavaScriptSerializer’s Serialize method to

Fig. 28.24 | A simple class to create objects to be converted into JSON format,

1252 Internet & World Wide Web How to Program

convert the objects into JSON strings. Then, lines 34 and 59 obtain a response object for
the current client, using the Current property of the HttpContext object. Then we use this
object to write the newly constructed JSON string as part of the response attribute, initi-
ating the server response to the Ajax application in Fig. 15.11. To fearn more about JSON
visit our JSON Resource Center at www.deitel.com/JSON.

28.9.2 Creating an ASP.NET REST-Based Web Service

We now show you how to create the CalendarService web service in Visual Web Devel-
oper. In the following steps, you'll create an ASP.NET Web Service project that executes on
your computer’s local IIS web server. Note that when you run this web service on your
local computer the Ajax application from Fig. 15.11 can interact with the service only if it
is served from your local computer. We discuss this at the end of this section. To create
the CalendarService web service in Visual Web Developer, perform the following steps:

Step I: Creating the Project i

T begin, use Visual Web Developer create a project of type ASP.NET Web Service. Select
File > New Wab Site... to display the New Web Site dialog (Fig. 28.25). Select ASP.NET Web
Service in the Templates pane. Select HTTP from the Location drop-down list to indicate
that the files should be placed on a web server. By default, Visual Web Developer indicates
that it will place the files on the local machine’s IIS web server ina virtual directory named
WebSite (http://Tocalhost/WebSite). Replace the name WebSite with CalendarSer-
vice for this example. Next, select Visual Basic from the Language drop-down list to ind-
icate that you will use Visual Basic to build this web service.

RSP NET Web Ska AZENEEEE @ltpersonal Web Ste Starter K
SRASP NET AIA-Enabled Web Ske (R Empty Web e

gl alax Conkrol Yookt Web Ste {FASearch Onls Templates...

Fig. 28.25 | Creating an ASP.NET Web Service in Visual Web Developer

Web Services 1253

Step 2: Examining the Newly Created Project

After you create the project, you should see the code-behind file Service. vb, which con-
wins code for a simple web service (Fig. 28.26). If the code-behind file is not open, it can
be opened by double clicking the file in the App_Code directory from the Solution Explo-
rer. Visual Web Developer includes three Imports statements thar are helpful for develop-
ing web services (lines 1-3). By default, a new code-behind file defines a class named
Service that is marked with the WebServi ce and WebServi ceBinding attributes (lines 5—
6). The class contains a sample web method named He1lawor1d (lines 1 1-14). This met-
hod is 2 placeholder that you will replace with your own method(s).

i Imports Systam.Web
P Importy Ipstawm. Veb.Sexvices
i Imports System, Ueb.Services.Protocols

L] <VebService (Namespace: = LUt // LRMBUKE, ong/ ") > _
de.b:lex:v:cclinﬁinq{(?onturm'l‘u:-ip,i?:otiiu.BuiePranlzi_}) >
<Giobal.Nicrosoft . Visuallasic,.CompilerServices.besignerGansrated() > _
Puklic Class Servioe

Inherits Syscem.¥eb.Sarvices. BebService

=1 <¥ebNethod{) >

12, Pubklic Fusetion HeiloWorld(} As String
Recurn "Hello ¥orid®

Ind Funerion

A
3
3
&
2
k)
&
3
tal
x

Exd Clasa

Fig. 28.26 | Code view of a web service.

Step 3: Modifying and Renaming the Code-Behind File

To create the CalendarService web service developed in this section, modify Service.vb
by replacing the sample code provided by Visual Web Developer with the code from the
CalendarService code-behind file (Fig. 28.23). Then rename the file CalendarSer-
vice.vb (by right clicking the file in the Solution Explorer and choosing Rename). This
code is provided in the examples directory for this chapter. You can download the exam-
ples from www.deitel. com/books/iw3htp4/,

Step 4 Creating an Item Class

Select File > New File... to display the Add New ttem dialog. Select Class in the Templates
pane and change the name of the file to Item.vb. Then paste the code for Item.vb
(Fig. 28.24) into the file.

1254 Internet & World Wide Web How to Program

Step 5: Examining the ASMX File

The Solution Explorer lists a Service.asmx file in addition to the code-behind file. A web
service's ASMX page, when accessed through a web browser, displays information about
the web service’s methods and provides access to the web service’s WSDL information.
However, if you open the ASMX file on disk, you will see that it actually contains only

<%@ WebService Language="vb" CodeBehind="~/App_Code/Service.vb"
Class="Service" %>

to indicate the programming language in which the web service’s code-behind file is writ-
ten, the code-behind file’s location and the class that defines the web service. When you
request the ASMX page through 1S, ASP.NET uses this information to generate the con-
tent displayed in the web browser (i.e., the list of web methods and their descriptions).
g;%v 6: Modifying the ASMX File

enever you change the name of the code-behind file or the name of the class chat def-
ines the web service, you must modify the ASMX file accordingly. Thus, after defining
class CalendarService in the code-behind file CalendarService.vb, modify the ASMX
file o contain the lines

<%Q WebServiée Language="vb" CodeBehind=
"~ /App_Code/CalendarService.vb" Class="CalendarService" %

Error-Prevention Tip 28.1

@ Update the web services ASMX file appropriately whenever the name of a web service’s code-
bebind file or the class name changes. Visual Web Developer creates the ASMX file, but does not
awtomatically wpdate it when you make changes to other files in the project.

Step 7: Renaming the ASMX File
The final step in creating the CalendarService web service is to rename the ASMX file

CalendarService.asmx.

Step 8: Changing the Web ., Config File to allow REST requests.

By default ASP.NET web services communicate with the client using SOAP. To make this
service REST-based, we must change web. config file to allow REST requests. Open the
web. config file from the Solution Explorer and paste the following code as a new element
in the system.web element.

<webServices>
<protocols:
<add name="HttpGet"/>
<add name="HttpPost"/>
</protocols>
</webServices>

Step 9: Adding the System. Web.Extensions Reference

‘The JavaScriptSerializer class that we use to generate JSON strings, is part of the Ajax
Extensions package. You can find information on installing and downloading ASP.NET
Ajax in Section 25.9. After you have installed ASP.NET Ajax, right click the project name
in the solution explorer and select Add Reference... to display the Add Reference window.
Select System.Web.Extensions from the .NET tab and click OK.

Web Services 1255

28.9.3 Adding Data Components to a Web Service

Next, you'll use Visual Web Developer’s tools to configure a DataSet that allows our Web
service to interact with the Calendar.mdf SQL Server 2005 Express database file. You can
download Calendar.mdf with the rest of the code for this example ar www.deite).com/
books/iw3htp4. You'll add a new DataSet to the project, then configure the bataSet’s
TableAdapter using the TableAdapter Configuration Wizard, The wizard allows you to sel-
ect the data source (Calendar .mdf) and to create the SQL statements necessary to support
the database operations discussed in Fig. 28.23’s description.

Step 1: Adding a DataSet to the Project

Add a DataSet named CalendarDataSet to the project. Right click the App_Code folder
in the Solution Explorer and select Add New Item... from the pop-up menu. In the Add New
ltem dialog, select DataSet, specify CalendarDataSet. xsd in the Name field and click Add.
This displays the CalendarDataSet in design view and opens the TableAdapter Configura-
tion Wizard. When you add a DataSet to a project, the IDE creates appropriate Table-
Adapter classes for interacting with the database tables,

Step 2: Selecting the Data Source and Creating a Connection

You'll use the TableAdapter Configuration Wizard in the nexr several steps to configure a
TableAdapter for manipulating the Events table in the Calendar.mdf database. Now,
you must select the database. In the TableAdapter Configuration Wizard, click the New Con-
nection... button to display the Add Connaction dialog. In this dialog, specify Microsoft
SQL Server Database File as the Data sourcs, then click the Browse... button to display the
Selact SQL. Server Database File dialog. Locate Calendar.mdf on your computer, select it
and click the Open button to return to the Add Connection dialog. Click the Test Connection
button to test the database connection, then click OK to return to the TableAdapter
Configuration Wizard. Click Next », then click Yes when you are asked whether you would
like o add the file to your project and modify the connection. Click Next > to save the
connection string in the application configuration file,

Step 3: Opening the Query Builder and Adding the Events Table from Calendar.mdf
You must specify how the TabTeAdapter will access the database. In this example, you'll
use SQL statements, so choose Use SQL Statements, then click Next ». Click Query Buii-
der... to display the Query Bullder and Add Tabie dialogs. Before building a SQL query, you
must specify the table(s) to use in the query. The Calendar.mdf database contains only
one table, named Events. Select this table from the Tables tab and click Add. Click Close
to close the Add Table dialog.

Step 4: Configuring a SELECT Query to Obtain a Specific Event

Now let’s create a query which selects an event with a particular ID. Select ID and Descrip-
tion from the Events table at the top of the Query Builder dialog. Next, specify the criteria
for selecting seats. In the Filter column of the ID row specify =@id to indicate that this filter
value also will be specified as a method argument. The Query Bullder dialog should now
appear as shown in Fig. 28.27. Click OK to close the Query Builder dialog. Click Next » to
choose the names of the methods to generate. Name the Fi11 method Fi11ById. Click the
Finish button to generate this method.

'

1256 Internet & World Wide Web How to Program

Fig. 28.27 | QueryBuilder dialog specifying a SELECT query that selects an event with a
specific ID.

Step 5: Adding Another Query to the EventsTableAdapter for the CalendarDataSet
Now, you'll create an UPDATE query that modifies a description of a specific event. In the
design area for the CalendarbataSet, click EventsTableAdapter to select it, then right click
it and select Add Query... to display the TableAdapter Query Configuration Wizard. Select
Use SQL Statements and click Next>. Select Update as the query type and click Next >.
Clear the text field and click Query Builder... to display the Query Buiider and Add Table
dialogs. Then add the Events table as you did in Step 3 and click Close to return to the
Query Builder dialog.

Step 6: Configuring an UPDATE Statement to Modify a Description of a Specific Event
In the Query Builder dialog, sclect the Description column from the Events table at the top
of the dialog, In the middle of the dialog, place the @descr in the New Value column for
the Description row to indicate that the new description will be specified as an argument
to the method that implements this query. In the row below Description, select ID and
specify @id as the Filter value to indicate that the ID will be specified as an argument to the
method that implements this query. The Query Builder dialog should now appear as shown
in Fig, 28.28. Click OK to return to the TableAdapter Query Configuration Wizard. Then
click Next > to choose the name of the update method. Name the method UpdateDescrip-
tion, then click Finish to close the TableAdapter Query Configuration Wizard.

Step 7: Adding a getItemsByDate Query
Using similar rechniques to Szeps 56, add a query that selects all events that have a spec-
ified date. Name the query Fi11ByDate.

Web Services ‘1287

Fig. 28.28 | QueryBuilder specifying an UPDATE statement used to modify a description.

Step 8: Testing the Web Service
At this point, you can use the CalendarService.asmx page to test the web service’s meth-
ods. To do so, select Start Without Debugging from the Debug menu. Figure 28.29 shows

the test page that is displayed for this web service when you run the web service applica-
tion.

uT:a: following oparations are supported. for a formai definition, please review
Service frescriotion.
L
Updates an event's description.

* golitemByld
Gety & list of events for a givan id.

* aslitemsBylate
Gets u fist of eveants for a given date,

Fig. 28.29 | The test page for the CalendarService web service. (Part | of 2.)

i258 Internet & World Wide Web How to Program

{*description™"Fowth of July Celebeations. A pecformance by the Bosgn Pops.”, i1}

Fig. 28.29 | The test page for the CalendarService web service. (Part 2 of 2.)

Calling a REST-based web service is simpler than calling SOAP web services demon-
strated earlier. Fig. 28.29 shows that you can invoke the web service directly from your
browser. For example, if you type the URL http://localhost/calendarService/
calendarService.asmx/getItemById?id=1 the browser will invoke the method get-
ItemByld and retrieve the event with the id value 1.

The client side interface for this application is implemented in the Ajax chapter, in
Fig 15.11. Because our Calendar application uses the Dojo Toolkit, you must have Dojo
installed on your computet. Download Dojo 0.4.3 from dojotoolkit.,org/downloads,
extract the Dojo directory and rename it to dojo043. Then place the CalendarService
folder that contains your web service, the dojo043 folder that contains the Dojo toolkit
and the Calendar.htm1 file in the same directory in the root directory of your web server,

Run the web service and direct your browser to the location of the Calendar.html
file. We populated the database only with events for July 2007, so the calendar is coded to
always display July 2007 when the application is loaded. To test whether the web service
works click a few dates like the fourth of July, the sixth of July or the twentieth of July for
which events exist in the Calendar database

28.10 Web Resources

waw. deitel . com/WehServices/

Visit our Web Services Resource Center for information on designing and implementing web ser-
vices in many languages, and information about web services offered by companies such as Google,
Amazon and eBay. You'll also find many additional Java tools for publishing and consuming web
services.

www . deitel.com/java/

www . deitel,com/JavaSE6Mustang/

www deitel.com/JavaEES/

www_deitel.com/JavaCertification/

www . deitel.com/JavaDesignPatterns/

Our Java Resource Centers provide Java-specific information, such as books, papers, articles, jour-
nals, websites and blogs that cover a broad range of Java topics (including Java web services).

www . deitel.com/ResourceCenters.html

Check out our growing list of Resource Centers on programming, Web 2.0, software and other
interesting topics.

Web Services 1259

java.sun.com/webservi ces/jaxws/index.jsp

The official site for the Sun Java API for XML Web Services (JAX-WS). Includes the API, docu-
mentation, tutorials and other useful links.

www.webservices.org

Provides industry-related news, articles and resources for web services.

www-130. ibm. com/developerworks/webservices

IBM’s site for service-oriented architecture (SOA) and web services includes articles, downloads,
demos and discussion forums regarding web services technology.

www . w3.org/TR/wsdl

Provides extensive documentation on WSDL, including a thorough discussion of web services and
related technologies such as XML, SOAP, HT'TP and MIME types in the context of WSDL,
www.w3.org/TR/soap ‘

Provides extensive documentation on SOAP messages, using SOAP with HTTP and SOAP security
issues.

wWW.ws-1.0rg .

The Web Services Interoperability Organization’s website provides detailed information regarding
building web services based on standards that promote interoperability and true platform indepen-
dence,

webservices.xml.com/security

Articles about web services security and standard security protocols,

REST-Based Web Services

en.wikipedia.org/wiki/REST

Wikipedia resource explaining Representational State Transfer (REST).

www . xfront., com/REST-Web-Services. html ’
Article entitled “Building Web Services the REST Way.”
www.1Cs.uci.edu/~fielding/pubs/di ssertation/rest.arch_style.htm
The dissertation that originally proposed the concept of REST-based services.
rest.blueoxen.net/cgi-bin/wiki.pl ?ShortSummaryOfRest

A short introeduction to REST,

www.prescod. net/rest
Links to many REST resources.

i

a

S

e

A T
e

Praat et
G

?%Mm“msmﬁa:m»v

ik
$iiols
i

ik

%

{2t

i

il
T
L
SRR

st

i

e
s Ty

i

S

lmmra.mc:www,

B ters st B
LA

